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Abstract

Landau–Lifshitz–Gilbert (LLG) equation is the fundamental equation to describe magnetization vector field dynam-

ics in microscale and nanoscale magnetic systems. This equation is highly nonlinear in nature and, for this reason, it is

generally solved by using numerical techniques. In this paper, the mid-point rule time-stepping technique is applied to

the numerical time integration of LLG equation and the relevant properties of the numerical scheme are discussed. The

mid-point rule is an unconditionally stable and second order accurate scheme which preserves the fundamental geomet-

rical properties of LLG dynamics. First, it exactly preserves the LLG property of conserving the magnetization mag-

nitude at each spatial location. Second, for constant in time applied fields, it preserves the LLG Lyapunov structure,

namely the fact that the free energy is a decreasing function of time. In addition, in the case of zero damping, the mid-

point rule preserves the conservation of the system free energy. The above preservation properties are unconditionally

valid, i.e. they are fulfilled for any value of the time-step. Finally, the LLG hamiltonian structure in the case of zero

damping is preserved up to the third order terms with respect to the time-step. The main difficulty related to this scheme

is the necessity of solving a large system of globally coupled nonlinear equations. This problem has been circumvented

by using special and reasonably fast quasi-Newton iterative technique. The proposed numerical scheme is then tested on

the standard micromagnetic problem no. 4. In the numerical computations, the spatial discretization is obtained by

finite difference technique and the magnetostatic field is computed through the Fast Fourier Transform method.
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1. Introduction

The analysis of magnetization dynamics in nanoscale ferromagnetic bodies is a very important issue

from both scientific and technological points of view. A ferromagnetic body is a complex nonlinear system

which may exhibit a very rich variety of dynamical behaviors including bifurcations, metastability, nonlin-
ear resonances, quasi-periodic dynamics and spatio-temporal chaos [44]. Magnetization dynamics and

relaxation, on the other hand, is one of the fundamental problems in the modern magnetic storage technol-

ogies [43]. Due to the enormous increase of data transfer rate, dynamics effects are one of the limiting fac-

tors for the performances of magnetic storage devices and materials such as hard-disk magnetic recording

materials, magnetic reading sensors (magnetoresistive (MR) and giant-MR heads) [4,8], magnetic RAM

elements [14,41].

The fundamental equation to describe the dynamics of magnetization vector fieldM(r, t), function of the

position r and time t, in microscale and nanoscale ferromagnetic bodies is the Landau–Lifshitz–Gilbert
(LLG) equation
oM

ot
¼ �cM� Heff � g

oM

ot

� �
; ð1Þ
where c is the absolute value of the gyromagnetic ratio and g is a positive phenomenological damping

parameter. The vector field M(r, t) 6¼ 0 for r 2 X, where X is the region occupied by the magnetic body.

The effective field Heff is given by the variational derivative of the micromagnetic Gibbs–Landau free energy

functional G(M; Ha) associated to the ferromagnetic body subject to an external field Ha [1,6,10]. More pre-

cisely, Heff is defined as
Heff ¼ � 1

l0VX

dG
dM

; ð2Þ
where l0 is the vacuum magnetic permeability, VX is the volume of X, and dG/dM denotes the variational

derivative of G with respect to M. The meaning of dG/dM can be inferred from the following identity:
dG ¼
Z
X

dG
dM

� dMdV ; ð3Þ
where dG is the differential of the functional G associated to the variation dM (in the mathematical liter-

ature dG is usually referred to as ‘‘Frechèt derivative’’ of G [18]).

The functional G(M; Ha) takes phenomenologically into account the fundamental interactions which

govern magnetization processes: exchange, anisotropy, magnetostatic and Zeeman interactions. The math-
ematical form of G(M; Ha) will be discussed in the sequel. For the time being, let us underline that the LLG

model is the dynamic generalization of the micromagnetic theory [1,6,10], and consistently with this, it in-

cludes the assumption that jM(r, t)j = Ms(T), namely that the magnetization vector field is assumed to have

uniform magnitude within the ferromagnetic body and this magnitude is equal to the saturation magneti-

zation Ms(T) at the temperature T, which is the temperature of the body (assumed constant in time and

spatially uniform) and of the heat bath surrounding it (for a justification of the micromagnetic theory

see the discussion in [1]).

We notice also that, for g = 0, from Eqs. (1)–(3) one has dG/dt = �l0VX�XHeff Æ oM/otdV = 0, and Eq. (1)
describes a conservative precessional (Larmor-like) dynamics of the vector fieldM driven by the vector field

Heff. As we will discuss in more details in the sequel, in the presence of damping the precessional motion of

magnetization tends to relax toward micromagnetic equilibria given by the equations M · Heff = 0 and

jM(r, t)j = Ms(T).

Let us now turn our attention to the techniques to solve LLG equation. We shall immediately observe

that, due to the nonlinear nature of this equation, analytical solutions can be derived in very few particular
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cases [7,19,24,36], or by using linearization techniques (see nucleation and spin-waves problems in [1]). In

fact, the only general (and mostly used) method to study magnetization dynamics is to solve LLG equation

by suitable numerical methods. The most common procedure is to use a semi-discretization approach.

First, the equation is only discretized in space by using finite difference or finite element methods [15]. This

leads to a discretized version of the micromagnetic free energy and a corresponding system of ordinary dif-
ferential equations (ODEs). Second, this system of ODEs is numerically integrated by using appropriate

time-stepping techniques. It is interesting to underline that, while the spatial discretization is generally car-

ried out trying to preserve the main properties of the energy functional G(M; Ha), little attention is gener-

ally paid to the preservation, after the time discretization, of the peculiar structure of LLG temporal

evolution. This is probably due to the fact that, in the past, the main emphasis was on static micromagnetics

and on obtaining accurate approximations of the free energy landscape associated to a magnetic system

subject to quasi-static external fields. This goal has been generally achieved by using sufficiently accurate

spatial discretizations. On the other hand, when dynamic magnetization processes have to be investigated,
the issue of using appropriate numerical time integration techniques becomes a rather crucial one. Never-

theless, this problem seems to have been substantially overlooked in magnetization dynamics studies and

most workers in LLG numerical simulation use �off-the-shelf� algorithms such as Euler, linear multi-step

methods (e.g. Adams–Bashforth, Adams–Moulton, Crank–Nicholson, Backward Differentiation Formulas

(BDF)) or Runge–Kutta methods [28,35]. We must underline here that these standard methods do not pre-

serve structural properties of LLG time evolution. This equation has indeed peculiar dynamic properties, a

discussion of which is in order.

(a) First, the magnetization has constant magnitude in time at each spatial location:
jMðr; tÞj ¼ jMðr; t0Þj 8t P t0; 8r 2 X; ð4Þ

where the initial condition fulfills the micromagnetic constraint jM(t0, r)j = Ms(T). Eq. (4) can be eas-

ily derived by scalar multiplying both sides of Eq. (1) by M(r, t). It is a fundamental constraint on the

LLG time evolution that should be respected in the time discretized version of LLG equation. Since

usual time-stepping methods do not preserve this property, most researchers follow the naive ap-
proach of renormalizing the magnetization vector field at each time-step or after a prescribed toler-

ance has been exceeded. This naive approach is actually a nonlinear numerical modification of the

LLG time evolution which might have relatively strong effect on the subsequent computation of mag-

netostatic field [21] and for this reason is not recommended, especially when long time regimes have to

be studied.

(b) Second, for constant in time external field, the LLG evolution has a Lyapunov structure [30], namely

the free energy functional is a decreasing function of time along the trajectories of LLG equation:
dG
dt

¼ �l0V X

Z
X
g
oM

ot

����
����
2

dV ; ð5Þ
which can be easily derived by scalar multiplying both sides of Eq. (1) by (Heff � goM/ot), integrating

over the region X and using Eqs. (2) and (3). This is a fundamental property because it guarantees that

the system tends toward stable equilibrium points, which are minima of free energy. Usual time-step-

ping techniques preserve this property only for a sufficiently small time-step. Indeed, when the time-
step is too large, instability phenomena can produce transient or even steady increase of energy. The

stability constraint on the time-step may usually be rather severe and this generally leads to unneces-

sary long computational time.

(c) Third, as previously observed, the LLG equation (1) is obtained by adding a phenomenological

damping term to an otherwise hamiltonian (conservative) equation and therefore one should expect

that, in the limit of g ! 0, the numerical integration should preserve energy and, if possible, the
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hamiltonian structure. This is not only a mathematical requirement. In fact, in most experimental sit-

uations LLG evolution is not strongly dissipative and the damping effects can be considered as a per-

turbation of the conservative motion. In this respect, it is quite reasonable from the physical point of

view to require that the numerical integration scheme is able to reproduce accurately the conservative

motion. This is definitely the most challenging part in the numerical simulations since the conservative
precession is generally much faster than the slow motion associated to dissipative processes. As it is

well known in hamiltonian dynamics studies, most standard numerical schemes do not preserve

energy and/or hamiltonian structure, and particular care must be devoted to develop appropriate

time-stepping techniques.

As matter of fact, it is generally very difficult to obtain the preservation of the above properties in the

time discretization by using explicit methods (e.g. Euler, Adams–Bashforth). Generic implicit methods (e.g.

implicit Euler), on the other hand, have good performances in terms of stability, but do not generally pre-
serve the amplitude of magnetization or the energy in the limit g ! 0. In addition, the use of implicit meth-

ods requires to solve a large system of coupled nonlinear equations at each time-step, which may lead to

unacceptable computational time, if appropriate techniques to conveniently determine the solution of this

system are not developed. In this respect, most researchers generally try to avoid implicit methods by using

appropriate semi-implicit techniques [42]. This has of course the drawback that accurate numerical time

integration requires stability upper bound for the time-step. This in turn can be quite problematic since

LLG dynamics, in many relevant cases, may exhibit dynamic processes with very different time scales.

The issue of developing time integrators for LLG equation that preserve relevant properties of the equa-
tion under discretization, has received lately some attention [20,21,26,27,31,37–40]. The general point of

view presented in these recent contributions is to propose the use of suitable geometric integrators

[11] which are techniques designed to preserve geometrical properties of dynamics, namely symmetry,

conservation of invariant quantities, hamiltonian structure etc. In particular, the possibility of developing

integrators for LLG equation based on Lie-group methods and Cayley transform have been investigated in

[20–22]. These methods preserve the magnetization amplitude but they do not generally preserve the LLG

Lyapunov structure and the energy in the limit of zero damping. The basic idea is to take into account the

conservation of magnetization magnitude by an appropriate change of variable (lift of the problem in the
Lie-algebra associated to the Lie-group of rotations). The problem is then solved with usual Runge–Kutta

time-stepping algorithms. These methods are conditionally stable and the stability requirements are cer-

tainly affected by the choice of the new set of state variables. This could lead to an increase of the temporal

stiffness and, consequently, to an increase of the computational cost.

In this paper, we will apply the (implicit) mid-point rule to the time integration of LLG equation. We

shall demonstrate that the use of mid-point rule leads to a numerical time-stepping that preserves the fun-

damental properties of LLG dynamics. This algorithm has been known for a long time and it has been ap-

plied extensively in the area of hamiltonian dynamics for its interesting preservation properties [3].
However, in its pure form, it has never been applied directly to the full 3D micromagnetics dynamical prob-

lem. A partial use of mid-point rule has been proposed in [37], where it has been applied along with an

appropriate explicit extrapolation formula (second order Adams–Bashforth) for the effective field. This

method has the property of preserving magnetization magnitude and, due to the explicit extrapolation for-

mula, does not require the inversion of a large system of coupled nonlinear equations (but just three by

three linear systems of equations at each location in space). However, the method does not in general pre-

serve the Lyapunov structure of LLG equation neither the energy for zero damping. In addition, the semi-

implicit nature of the scheme imposes stability restrictions to the time-step.
By using the mid-point rule, we can overcome the drawbacks of the standard methods. The method is

unconditionally stable, preserves exactly, independently from the time-step, magnetization magnitude and,

in the case of zero damping, the free energy of the system. In addition, mid-point rule preserves uncondi-
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tionally Lyapunov structure of LLG dynamics for constant applied field, namely in the discrete dynamics,

the free energy is always decreasing regardless of the time-step. The price we have to pay is that now we

have to solve a large (generally full) system of nonlinear algebraic equations. As we will discuss in the fol-

lowing, this problem has been effectively tackled by using a quasi-Newton algorithm, which allows one to

deal with sparse banded matrix inversions only.
2. The mathematical model

It is very useful and insightful for the following discussion to introduce a dimensionless form of LLG

equation. By dividing both sides of Eq. (1) by cM2
s , LLG equation can be written in the following normal-

ized form:
om

ot
¼ �m� heffðm; tÞ � a

om

ot

� �
; ð6Þ
where m(r, t) = M(r, t)/Ms (m(r, t) 6¼ 0 for r 2 X),Ms is the saturation magnetization (the dependence on the
temperature is understood), heff = Heff/Ms, a = gcMs is the dimensionless Gilbert damping constant, and the

time is measured in units of (cMs)
�1 (where c = 2.21 · 105 Hz (A/m)�1).

The LLG equation (6) is implicit with respect to om/ot and it can be transformed in the equivalent Lan-

dau–Lifshitz form:
om

ot
¼ � 1

1þ a2
m� heffðm; tÞ � a

1þ a2
m� ðm� heffðm; tÞÞ; ð7Þ
where om/ot is explicitly expressed. This form of LLG equation is the most commonly used for numerical

integration.

The normalized effective field heff can be defined by the variational derivative heff = �dg/dm of the nor-

malized micromagnetic free energy [1] functional gðm; haÞ ¼ GðM;HaÞ=ðl0M
2
sV XÞ. The functional g is

formed by the sum of normalized exchange, magnetostatic, anisotropy and Zeeman energy, respectively:
gðm; haÞ ¼
1

VX

Z
X

A

l0M
2
s

ðrmÞ2 � 1

2
hm �mþ K1

l0M
2
s

1� ðm � eanÞ2
h i

� ha �m
� �

dV ; ð8Þ
where A is the exchange constant, K1 is the uniaxial anisotropy constant, ean is the easy axis unit-vector and

hm is the magnetostatic (demagnetizing) field, which is the solution of the following boundary value

problem:
r � hm ¼ �r �m; r� hm ¼ 0; ð9Þ

n� hm½ �oX ¼ 0; n � hm½ �oX ¼ n �m. ð10Þ

In Eqs. (9)–(10), we have denoted with n the outward normal to the boundary oX of the magnetic body, and

with [hm]oX the jump of the vector field hm across oX.
The magnetization m(r, t) is also assumed to satisfy the following condition at the body surface:
om

on
¼ 0; ð11Þ
which is the condition expected when no surface anisotropy is present [1].

By considering the variational derivative of g(m; ha) (see Eq. (8)) with respect to the vector field m and by

using Eqs. (9)–(10) and the boundary condition (11), one can readily derive that the effective field is con-
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stituted by the sum of four terms: the exchange field hex, the magnetostatic field hm, the anisotropy field han
and the applied field ha:
heffðm; tÞ ¼ � dg
dm

¼ hex þ hm þ han þ haðtÞ; ð12Þ
where the explicit dependence of heff on time is related to the dependence on time of ha. The first three terms

in Eq. (12) are linearly related to the vector field m through the following equations [1]:
hex ¼
2A

l0M
2
s

r2mðr; tÞ; ð13Þ

hm ¼ � 1

4p
rr

Z
X
rr0

1

jr� r0j

� �
�mðr0; tÞdV r0 ; ð14Þ

han ¼
2K1

l0M
2
s

eanðrÞðeanðrÞ �mðr; tÞÞ. ð15Þ
From Eqs. (9)–(11) and (13)–(15), one can easily prove that the sum of the first three terms of the effective

field (12) is a linear and formally self-adjoint operator acting on the vector field m in a suitable subspace of

sufficiently regular vector fields of L2ðXÞ (i.e. the space of vector fields v with jvj2 integrable) with respect to

the usual scalar product in L2ðXÞ:
ðv;wÞL2ðXÞ ¼
Z
X
vðrÞ � wðrÞdV ; ð16Þ
where v and w are two L2ðXÞ generic vector fields. In other terms, the effective field (12) can be written in the

following form:
heffðm; tÞ ¼ �Cmþ haðtÞ; ð17Þ

where C is a linear formally self-adjoint integro-differential operator in L2ðXÞ, namely

ðCv;wÞL2ðXÞ ¼ ðv;CwÞL2ðXÞ for all sufficiently regular vector fields v and w.

Let us now summarize the fundamental properties of LLG dynamics in the normalized quantities intro-

duced above.

The first fundamental property is the normalized version of Eq. (4):
jmðr; tÞj ¼ jmðr; t0Þj 8t P t0; 8r 2 X; ð18Þ

where in micromagnetics problems it is normally assumed jm(r, t0)j = 1, which is equivalent to the micro-

magnetic constraint jMj = Ms.

The second fundamental property, as preliminarily discussed in the introduction, is related to the nature

of the energy balance in LLG dynamics. By scalar multiplying both sides of Eq. (6) by (heff(m, t) � aom/ot)

and using the fact that heff = �dg/dm, one readily obtains the following energy balance equation:
d

dt
gðmðtÞ; haðtÞÞ ¼ �

Z
X
a
om

ot

����
����
2

dV �
Z
X
m � oha

ot
dV . ð19Þ
Let us discuss in more details the implications of this equation. First we notice that, for constant applied

field, Eq. (19) reduces to
d

dt
gðmðtÞ; haðtÞÞ ¼ �

Z
X
a
om

ot

����
����
2

dV ; ð20Þ
which is the normalized version of Eq. (5). This equation shows that the LLG dynamics has a Lyapunov

structure [30], namely, for constant external field, the free energy is always a decreasing function of time. In
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addition, it also demonstrates the nature of the Gilbert phenomenological damping: the dissipation is given

by a quadratic form of the vector field om/ot. This is connected to the fact that the Gilbert damping term

can be introduced by using a Rayleigh dissipation function given by (1/2)�Xajom/otj2dV [16,17].

The property expressed in Eq. (20) is very important because it guarantees that, under constant external

field, the system tends toward meta-stable equilibrium states, which are the minima of the free energy. This
property strongly limits the possible dynamics of LLG equation under constant external conditions since it

prevents the emergence of self-oscillations or chaotic behaviour. These more complicated dynamical behav-

iours can be driven only by means of time-varying external fields [44].

The third fundamental property is related to the structure of the equation when a = 0. In this case, the

LLG equation becomes an hamiltonian dynamical system for the vector field m defined as
om

ot
¼ m� dgðm; haÞ

dm
. ð21Þ
The LLG hamiltonian form (21) is not the ordinary hamiltonian form with positions and conjugate mo-

menta evolution equations. This form belongs to a more general class of hamiltonian equations which

can be defined by introducing an appropriate Poisson bracket [25]. In the case of Eq. (21), the associated

to LLG Poisson bracket is given by the following Lie–Poisson bracket [9]:
ff ðmÞ; hðmÞg ¼ �m � df
dm

� dh
dm

; ð22Þ
where f(m) and h(m) are two generic functionals of m. In Eq. (21), the role of the hamiltonian is played by

g(m; ha) and it can be written as
omx

ot
¼ fmx; gðm; haÞg;

omy

ot
¼ fmy ; gðm; haÞg;

omz

ot
¼ fmz; gðm; haÞg. ð23Þ
It should be underlined that, although the LLG dynamics is always dissipative, it is interesting to consider

the conservative case since in most experimental situations the dissipative effects are quite small (typically

a � 1). In other terms, the LLG dynamics, on relatively short time scale, is a perturbation of the conser-

vative (hamiltonian) precessional dynamics.
3. Spatially semi-discretized LLG equation

We now introduce a spatially discretized version of the mathematical model (6). The discussion pre-

sented below is considerably general and thus applicable to all the usual spatial discretization techniques

such as finite difference or finite elements [15].

To start the discussion, let us assume that the magnetic body has been subdivided in N cells or finite ele-

ments. We denote the magnetization vector associated to the lth cell or node by mlðtÞ 2 R3. Analogously,

the effective and the applied fields at each cell will be denoted by the vectors heff,l(t), ha,l(t). In addition to
the cell vectors, we introduce mesh vectors which are R3N vectors formed by the collection of all cell vectors.

In this respect, we will indicate the mesh vectors associated to m, heff, ha with the notation m, heff, ha. These

vectors are given by
m ¼
m1

..

.

mN

0
BB@

1
CCA; heff ¼

heff;1

..

.

heff ;N

0
BB@

1
CCA; ha ¼

ha;1

..

.

ha;N

0
BB@

1
CCA. ð24Þ
Usual spatial discretization techniques [15] (e.g. finite element and finite difference methods) quite naturally

lead to a discretized version of the free energy (8), which has generally the form
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gðm; haÞ ¼
1

2
m � C �m� ha �m; ð25Þ
where C is now a 3N · 3N symmetric matrix[35] which describes exchange, anisotropy and magnetostatic
interactions. Once the free energy has been discretized, the corresponding spatially discretized effective field

heff(m, t) can be obtained as
heffðm; tÞ ¼ �
og

om
¼ �C �mþ haðtÞ. ð26Þ
We notice that the mathematical structure of the effective field (see Eq. (17)) is formally preserved after the
spatial discretization, and the matrix C is the discretized version of the formally self-adjoint integro-differ-

ential operator C.
The matrix C can be naturally decomposed into the sum of the three terms Cex, Cm, Can, which corre-

spond to discretized exchange, magnetostatic and anisotropy interactions:
C ¼ Cex þ Cm þ Can. ð27Þ

It is important to observe that Cex and Can are sparse matrices since the exchange and anisotropy interac-
tions have a local character, whereas Cm is a full matrix owing to the long-range magnetostatic interactions.

By using the above notations, the spatially semi-discretized LLG equation consists in a system of 3N

ODEs, which, for the generic lth cell, can be written in the following form:
d

dt
ml ¼ �ml � heff ;lðm; tÞ � a

d

dt
ml

� �
; ð28Þ
and for the whole collection of cells as
d

dt
m ¼ �KðmÞ � heffðm; tÞ � a

d

dt
m

� �
; ð29Þ
where K(m) is a block-diagonal matrix
KðmÞ ¼ diagðKðm1Þ; . . . ;KðmN ÞÞ ð30Þ

with blocks Kð�Þ 2 R3�3 such that KðvÞ � w ¼ v� w 8v;w 2 R3. We also observe that K(m) is linearly depen-

dent on m through an appropriate third order tensor C as
KðmÞ ¼ C �m; ð31Þ

where C is block diagonal with N diagonal 3 · 3 · 3 blocks constituted by third order permutation tensors
and the dot product in Eq. (31) represents an index contraction. The meaning of this contraction can be

inferred by considering that the component of the vector v Æ (C Æ w) corresponding to the lth cell is given by
v � ðC � wÞð Þl ¼ vl � wl; ð32Þ

where we have used the notation introduced above for mesh vectors v, w and cell vectors vl, wl.

Now, we briefly summarize the properties of the semi-discretized LLG (28) and (29). These properties
are completely analogous to the properties (18)–(22) and the demonstration can be obtained by following

the very same line of reasoning. Indeed, one can easily prove that
jmlðtÞj ¼ jmlðt0Þj 8t P t0; l ¼ 1; . . . ;N ; ð33Þ

d

dt
gðmðtÞ; haðtÞÞ ¼ �a

dm

dt

����
����
2

�m � dha
dt

¼ �
XN
l¼1

a
dml

dt

����
����
2

�
XN
l¼1

ml �
dha;l

dt
; ð34Þ
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and, in the case of constant applied field, that
d

dt
gðmðtÞ; haðtÞÞ ¼ �a

dm

dt

����
����
2

¼ �
XN
l¼1

a
dml

dt

����
����
2

; ð35Þ
finally, in the case a = 0, the semi-discretized LLG (29) takes the form
dm

dt
¼ KðmÞ � og

om
; ð36Þ
which is related to the semi-discretized version of Poisson bracket (22)
ff ðmÞ; hðmÞg ¼ of
om

� KðmÞ � oh
om

; ð37Þ
where f(m) and h(m) are two generic functions of m, and of/om, oh/om are the corresponding gradients.

In connection with the hamiltonian structure (36), it is interesting to mention that, when the matrix K(m)

has the linear form (31), the related hamiltonian system (36) is said to have a Lie–Poisson structure [25]. As

we will discuss in the sequel, this structure affects the nature of mid-point approximation of LLG equation.
4. Qualitative properties of mid-point LLG discrete dynamics

We now proceed to derive the full discretization of LLG equation by applying the mid-point rule to the

spatially semi-discretized system of ODEs given by Eq. (28). In the following, we will denote the value of

physical quantities at the nth time-step with the suffix n. The mid-point rule consists in the following time-

stepping scheme, written for the generic lth cell:
mnþ1
l �mn

l

Dt
¼ � mnþ1

l þmn
l

2

� �
� heff ;l

mnþ1 þmn

2
; tn þ Dt

2

� �
� a

mnþ1
l �mn

l

Dt

� �
; ð38Þ
where Dt is the time-step, which, for the sake of simplicity, is assumed here constant. Nevertheless, due to

the single-step nature of mid-point rule, most considerations in the following can be generalized to noncon-

stant time-steps. Eq. (38) can be rewritten in terms of mesh vectors as follows:
mnþ1 �mn

Dt
¼ �K

mnþ1 þmn

2

� �
� heff

mnþ1 þmn

2
; tn þ Dt

2

� �
� a

mnþ1 �mn

Dt

� �
. ð39Þ
Eq. (39) defines mn+1 in terms of mn implicitly. By solving this equation for mn+1, we generate a map
mnþ1 ¼ UnðDt;mnÞ; ð40Þ

which describes the LLG discrete dynamics. We will discuss the technique for solving the implicit Eq. (39)

in the following section. In this section, we will focus on the properties of the map (40) defined implicitly by

Eq. (38) or equivalently by Eq. (39).

As a preliminary consideration, we notice that, in most LLG numerical investigations, the discretization
of LLG equation is carried out starting from the Landau–Lifshitz form (7), which has the advantage of

explicitly expressing the time derivative of m. Conversely, in the approach we propose, we directly discretize

the original LLG equation in which the time derivative is implicitly contained. In fact, since the mid-point

scheme is already implicit, the implicit nature of LLG equation does not introduce any further complica-

tion, but rather it drastically simplifies the treatment of damping in the algorithm.

The first important property of the discrete dynamics can be readily obtained from Eq. (38) by scalar

multiplying both sides of the equation by ðmnþ1
l þmn

l Þ. This leads immediately to
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ðmnþ1
l �mn

l Þ � ðmnþ1
l þmn

l Þ ¼ jmnþ1
l j2 � jmn

l j
2 ¼ 0; l ¼ 1; . . . ;N ; ð41Þ
which means that the magnitude of the magnetization vector remains constant in each cell. Thus, the mid-

point rule preserves exactly the property (33), regardless of the time-step.

Next, we analyze the energy balance properties of the discrete dynamics. The derivation of the main

equation can be carried out by scalar multiplying both sides of Eq. (39) by the quantity
heff
mnþ1 þmn

2
; tn þ Dt

2

� �
� a

mnþ1 �mn

Dt

� �
. ð42Þ
It is clear that, due to the antisymmetry of the matrix K(m) (which is related to the antisymmetry of its 3 · 3

diagonal blocks), the dot multiplication of (42) and the right-hand side of Eq. (39) gives zero. As far as the

left-hand side is concerned, by using the expression of the discretized effective field (26), one obtains
mnþ1 �mn

Dt
� �C � mnþ1 þmn

2

� �
þ ha tn þ Dt

2

� �
� a

mnþ1 �mn

Dt

� �
¼ 0. ð43Þ
Then, we use the following mid-point approximation for ha:
ha tn þ Dt
2

� �
¼ hnþ1

a þ hna
2

� Dt2

4

d2ha
dt2

����
tnþDt

2

þ Raðtn;DtÞ; ð44Þ
where Ra(t
n, Dt) is the remainder of the mid-point formula which is infinitesimal of order 4 with respect to

Dt. Now, by taking into account the symmetry of the matrix C and Eq. (44) one can readily derive the fol-

lowing equation:
gðmnþ1; hnþ1
a Þ � gðmn; hnaÞ
Dt

¼ � a
mnþ1 �mn

Dt

����
����
2

� ðmnþ1 þmnÞ
2

� h
nþ1
a � hna
Dt

� Dt2

4

d2ha
dt2

����
tnþDt

2

� ðm
nþ1 �mnÞ
Dt

þ Raðtn;DtÞ �
ðmnþ1 �mnÞ

Dt
. ð45Þ
This equation shows that the discrete dynamics reproduces the energy balance for semi-discretized equation

(34) up to second order terms in Dt.
We preliminarily notice that, when the applied field ha is piece-wise linear function of time in each inter-

val [tn, tn+1], the last two terms in the right-hand side vanish and the energy balance is exactly reproduced in

its mid-point time discretized version.
More importantly, in the case of constant applied field, the last three terms in right-hand side of Eq. (45)

vanish and the energy balance reduces to the following form:
gðmnþ1; haÞ � gðmn; haÞ
Dt

¼ �a
mnþ1 �mn

Dt

����
����
2

. ð46Þ
Eq. (46) has very important consequences. First, independently of the time-step, the discretized energy

g(mn; ha) is decreasing. This confirms that the mid-point rule is an unconditionally stable algorithm which
reproduces the relaxation behavior in LLG discrete dynamics for any choice of the time-step. Notice also

that the rate of change of energy in the discrete dynamics is coherent the mid-point version of Eq. (35).

Second, for a = 0 the energy is exactly preserved regardless of the time-steps. These two properties con-

firm the unconditional stability of mid-point rule, but more importantly they indicate that, in the short time

scale, the mid-point rule will tend to reproduce correctly the most important part in the LLG dynamics, i.e.

the precessional magnetization motion.

Finally, it is also important to address the issue of the preservation of hamiltonian structure [12] (in the

case a = 0) given by Eq. (36). Let us indicate by m(t) = /(t, m0) the flow of Eq. (36), namely the solution of
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the Cauchy problem for the system of ODEs (36) with the initial condition m(t = t0) = m0. It is well known

[25] that the map /(t, m0), mapping m0 into m(t), satisfies the following symplecticity condition:
o/ðt;m0Þ
om0

� Kðm0Þ �
o/ðt;m0Þ

om0

� �T

¼ Kð/ðt;m0ÞÞ. ð47Þ
A numerical scheme is said to preserve the hamiltonian structure if the associated map, which connects one

step to the following (in the case of mid-point rule the map Un(Dt, mn) introduced in Eq. (40)), fulfills the

condition (47). In this respect, by using the fact that the LLG equation has a Lie–Poisson structure (i.e. the

matrix K(m) is linear with respect to m as expressed in Eq. (31)), it is possible to prove the following error

formula [3]:
oUnðDt;mnÞ
omn

� KðmnÞ � oUnðDt;mnÞ
omn

� �T

� KðUnðDt;mnÞÞ ¼ OðDt3Þ; ð48Þ
where OðDtnÞ indicates an infinitesimal of order n. Eq. (48) implies that the mid-point rule applied to LLG

equation preserves hamiltonian structure up to the third order term in Dt.
It is also interesting to notice that the preservation of hamiltonian structure would be exact for an

hamiltonian system defined by a Poisson bracket of the type {f(m), h(m)} = of/om Æ J Æ oh/om, where the
matrix J does not depend on m [11]. In magnetization dynamics studies this situation is encountered in

all those problems in which LLG equation is linearized around a given magnetization state as it is gen-

erally done in spin-wave analysis and nucleation problems [1]. In this respect, it must be underlined

that, although these problems are linear in nature, analytical solutions are obtainable only under quite

restrictive assumptions about the geometry of the magnetic body. General geometries can be treated

only by numerical techniques.
5. Solution of the time-stepping equation

The properties we have just discussed are strongly related to the implicit nature of mid-point rule. As a

consequence of this implicit nature, we have to solve the time-stepping equation (39) for the unknown mn+1

at each time-step which amounts to solve the following system of 3N nonlinear equations in the 3N un-

knowns mn+1:
Fnðmnþ1Þ ¼ 0; ð49Þ

where FnðyÞ : R3N ! R3N is the following vector function:
FnðyÞ ¼ I� aK
yþmn

2

� �� �
� y�mn
� �

� Dt fn
yþmn

2

� �
; ð50Þ
and where
fnðmÞ ¼ �KðmÞ � heff m; tn þ Dt
2

� �
¼ KðmÞ �

og

om
m; ha tn þ Dt

2

� �� �
ð51Þ
is the right-hand side of the conservative semi-discretized LLG Equation (29).

The solution of the system of equations (49) can be obtained by using Newton–Raphson (NR) algo-

rithm. To this end, we derive the jacobian matrix Jn
F ðyÞ of the vector function Fn(y), which, after simple

algebraic manipulations, can be written in the following form:
Jn
F ðyÞ ¼ I� aKðmnÞ � Dt

2
Jn
f

yþmn

2

� �
; ð52Þ
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where Jn
f is the jacobian matrix associated to fn(m). By using Eqs. (31) and (51), one obtains
Jn
f ðmÞ ¼ ofn

om
ðmÞ ¼ KðmÞ � C þ C � �C �mþ ha tn þ Dt

2

� �� �
. ð53Þ
The main difficulty in applying NR method is that the Jacobian Jn
F ðyÞ of F

n(y) is a full matrix, due to the

long-range character of magnetostatic interactions. In this connection, let us observe that the damping term

affects only a (small for a � 1) sparse component of the jacobian Jn
F ðyÞ and thus does not introduce any

additional difficulty.
It is important to stress that, due to the full nature of Jn

F ðyÞ, the use of the plain NR method would re-

quire an unpractical computational cost. This problem can be circumvented, as it is usual in solving field

problems with implicit time-stepping [35], by using a quasi-Newton method. This consists in considering a

reasonable and sparse approximation of the Jacobian. In this respect, we consider the following expression
~J
n

F in which magnetostatic interactions are not included:
~J
n

F ðyÞ ¼ I� aKðmnÞ � Dt
2
~J
n

f

yþmn

2

� �
; ð54Þ
where the matrix ~J
n
f is
~J
n

f ðmÞ ¼ �KðmÞ � ð�ðCex þ CanÞÞ þ C � �ðCex þ CanÞ �mþ ha tn þ Dt
2

� �� �
. ð55Þ
Basically, the latter equation is obtained by substituting in Eq. (53) the full matrix C with its sparse com-

ponent Cex + Can. Thus, the iterative procedure can be summarized as follows:
y
0
¼ mn; y

kþ1
¼ y

k
þ Dy

kþ1
with ~J

n

F ðykÞDykþ1
¼ �Fnðy

k
Þ. ð56Þ
At each iteration, the linear system defined by the matrix (55) has to be inverted. Since this matrix is non-

symmetric, we have found appropriate to use generalized minimum residual (GMRES) method [32]. The

iteration (56) is repeated until the norm kFnðy
k
Þk is under a prescribed tolerance.

The iterative technique we developed to solve Eq. (49) belongs to the category of quasi-Newton methods.

It has been proven that this kind of iterative procedures is convergent provided that the initial guess is suf-
ficiently close to the �true� solution of the system and the order of convergence is the first order [29]. In this

respect, we have relied on the continuation of the numerical solution: the initial guess for the solution at the

time-step n + 1 is the magnetization state mn.

It is interesting to notice that, if one considers a model in which the demagnetizing field is neglected, the

iterative procedure (56) becomes a pure Newton–Raphson algorithm with quadratic convergence [29]. This

kind of model is generally used to analyze ferromagnetic bodies in such small spatial scale that the exchange

and anisotropy interactions are the only relevant interactions [23]. Another area where one is interested

in LLG-like equation without demagnetizing field is the study of integrable spin models and Heisenberg
model [13].
6. Accuracy and stability tests for LLG discrete dynamics

We have shown that mid-point rule time-stepping preserves magnetization magnitude and Lyapunov

structure of LLG equation. Nevertheless, since the time-stepping equations (39) are solved through an iter-

ative procedure, the properties of mid-point rule we have discussed in Section 4 are fulfilled only within a
certain accuracy related to the tolerance which we impose on the quasi-NR technique. In this respect, it is

important to test the accuracy of the preservation of LLG properties during the computation.
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To this end, as far as magnetization magnitude conservation is concerned, we will check the accuracy

with the following quantities:
mav ¼
1

N

XN
l¼1

jmlj; r2
m ¼ 1

N

XN
l¼1

ðjmlj � mavÞ2; ð57Þ
which are, respectively, mean value and variance of the magnetization magnitude over the cells of the mesh.

Let us observe that since the conservation of magnetization amplitude is usually controlled either with

geometric integration or renormalization at each time-step, numerical instabilities will not manifest them-

selves through the divergence of m, but with anomalous behavior of energy.

Thus, as far as the energy balance equation is concerned, we use the self-consistency criterion proposed

by Albuquerque and coworkers [2]. This criterion is valid for constant applied field and is based on Eq. (35)

rewritten in the following form:
a ¼ d

dt
gðmðtÞ; haÞ

� �
dm

dt

����
����
2

,
. ð58Þ
To test the preservation of energy dynamics in numerical computation, we consider the value
ân ¼ �
gðmnþ1; haÞ � gðmn; haÞ

Dt

 !
mnþ1 �mn

Dt

����
����
2

,
; ð59Þ
computed at each time-step, and we compare it with the constant a. We observe that if we could exactly
invert the system of nonlinear equations (49), according to property expressed in Eq. (46), then the sequence

ân would be constant and coincident with a. However, since we determine mn+1 by an iterative procedure

the sequence will be in fact nonconstant and it will usually exhibit an oscillatory behavior. In particular,

unstable behaviors correspond to negative ân.
For the case of conservative dynamics, the discretized energy is conserved according to Eq. (35) (for

a = 0):
gðmðtÞ; haÞ ¼ gðmðt0Þ; haÞ 8t P t0. ð60Þ
After mid-point rule time discretization, this property becomes (see Eq. (46)):
gðmnþ1; haÞ ¼ gðmn; haÞ; ð61Þ
which holds regardless of the time-step. One can test the accuracy of the scheme by recording the deviation

of the total energy from its initial value. Again, one cannot expect that this property will be exactly fulfilled

since we solve the time-stepping algorithm with an iterative procedure. In this respect, we will verify a pos-

teriori that the energy conservation is guaranteed with sufficient precision by computing the relative error eg
of g(mn; ha) with respect to the initial energy g(m0; ha):
eng ¼
gðmn; haÞ � gðm0; haÞ

gðm0; haÞ
; ð62Þ
and checking that the sequence eng remains within prescribed tolerance.
7. Finite difference spatial discretization of LLG equation

Up to this point the considerations we made about the properties and the implementation of mid-point

rule were rather independent from the spatial discretization used. In the following, to test the method we

have chosen a specific technique based on finite difference method. The magnetic body is subdivided into a
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collection of rectangular prisms with edges parallel to the coordinate axes. The edge lengths are dx, dy, dz. In

this framework, it is convenient to identify each cell by three indices i, j, k instead of using the index l as we

did before. The magnetization mi,j,k is assumed to be uniform within the generic (i, j, k) cell. With this nota-

tion, the effective field in the generic (i, j, k) cell can be expressed as
heff ;i;j;k ¼ hex;i;j;k þ hm;i;j;k þ han;i;j;k þ ha;i;j;k. ð63Þ

The exchange field hex;i,j,k is computed by means of a 7-point laplacian discretization, which is second order

accurate in space. In the generic ‘‘internal’’ cell (i, j, k), it can be expressed as follows:
hex;i;j;k ¼
2A

l0M
2
s

miþ1;j;k þmi�1;j;k

d2
y

þmi;jþ1;k þmi;j�1;k

d2
x

þmi;j;kþ1 þmi;j;k�1

d2
z

� 2

d2
y

þ 2

d2
x

þ 2

d2
z

 !
mi;j;k

" #
. ð64Þ
A similar expression holds for the boundary cells, where the Neumann boundary condition (11) has to be

taken into account. Since the exchange interaction is a first-neighbors interaction, one can easily observe

that the matrix Cex is a block-diagonal matrix.

The magnetostatic field hm;i,j,k can be expressed as discrete convolution [34,45]:
hm;i;j;k ¼
X
i0 6¼i

X
j0 6¼j

X
k0 6¼k

N i�i0 ;j�j0;k�k0 �mi0;j0 ;k0dxdydz; ð65Þ
where Ni�i 0,j�j 0,k�k 0 is the 3 · 3 block of the magnetostatic interaction matrix Cm which describes the mag-

netostatic interaction between the cells i, j, k and i 0, j 0, k 0. The discrete convolution (65) is computed by
means of 3D Fast Fourier Transform (FFT) using the zero-padding algorithm [5]. The kernel of the con-

volution is obtained by means of a generalization to prism (non cubic) cells of the formulas proposed in [34]

for cubic cells. As far as anisotropy is concerned, we assume that the anisotropy field is
han;i;j;k ¼
2K1

l0M
2
s

ðmi;j;k � eanÞean. ð66Þ
and the matrix Can is a diagonal matrix.
8. Numerical simulations of l-mag standard problem no. 4

We have applied the above numerical technique to solve the l-mag standard problem no. 4 (see [28]).

This problem concerns the study of magnetization reversal dynamics in a permalloy thin-film subject to

a constant and spatially uniform external field, applied almost antiparallel to the initial magnetization.

The geometry of the medium is sketched in Fig. 1(a). The material parameters are A = 1.3 · 10�11 J/m,
Ms = 8.0 · 105 A/m, K1 = 0 J/m3 and a = 0.02. The initial state is an equilibrium ‘‘S-state’’ (see [28] and

Fig. 1(b)) such as is obtained after applying and slowly reducing a saturating field along the [1, 1, 1] direc-

tion to zero [28]. In all the numerical simulations, the magnetization is assumed to have reached equilibrium

when
max
l¼1;...;N

mnþ1
l �mn

l

Dt

����
���� < etorque; ð67Þ
i.e. the maximum of the (normalized) torque across the body is less than a prescribed tolerance etorque. For
our computations we have chosen etorque = 10�5. Moreover, the stopping criterion of the quasi-Newton iter-

ative procedure has been chosen
max
q¼1;...;3N

jF n
qðykÞj < 10�14; ð68Þ
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Fig. 1. (a) Thin-film geometry for l-mag standard problem no. 4; (b) initial equilibrium S-state.
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where F n
qðykÞ is the qth component of the vector Fnðy

k
Þ, and the index k indicates the number of quasi-New-

ton iterations.

Two switching events have been calculated using fields applied in the x–y plane of different magnitude

and direction. In the first case the external field is applied at an angle of 170� off the x axis with x–y com-

ponents such that l0Mshax = �24.6 mT, l0Mshay = 4.3 mT and l0ha = 25 mT. In the second case the exter-

nal field is applied at an angle of 190� off the x axis with x–y components such that l0Mshax = �35.5 mT,

l0Mshay = �6.3 mT, and l0 Msha = 36 mT. In both cases the cell edges are dx = 3.125 nm, dy = 3.125 nm,

dz = 3 nm and therefore the number of cells is N = 160 · 40 · 1 = 6400.

Next we report the comparison between the solution obtained using the above numerical technique and
the solutions submitted by other researchers [28] to the l-mag website. The time-step of the mid-point

numerical algorithm is constant and it is such that (cMs)
�1Dt = 2.5 ps. This value has been chosen only

on the basis of accuracy, since the mid-point rule is unconditionally stable. In this respect, we observe that

the time-steps chosen in the other submitted computations (see [28]) are considerably smaller (from tens of

femtoseconds to 0.2 picoseconds). These small time-steps are presumably due to numerical stability

requirements.

In the results presented in the sequel, we plot average value of magnetization components. For instance,

the average value Æmxæ of the mx component is computed as
hmxi ¼
1

N

X
i;j;k

mx;i;j;k. ð69Þ
In Figs. 2 and 3 plots of Æmyæ as a function of time are reported. We observe that in the first case (Fig. 2)

there is substantial agreement between the submitted solutions (see [28]) and for this reason we report, for

comparison purposes, only the solution proposed by McMichael and coworkers. In Fig. 4 the plots of mag-

netization vector field when Æmxæ crosses zero for the first time are reported. To check whether the numerical

solution depends on the cells size, numerical simulations of the same problem were performed with a smal-

ler cell edge (2.5 nm, number of cells N = 10000). The results reported in Fig. 5 show that the magnetization

dynamics, computed for the two different mesh sizes, are almost coincident. As far as accuracy is concerned,
the self-consistency conditions mentioned in Section 6 have been verified by means of the computation of

the values mav; r2
m and ân. The result of this computations is reported in Figs. 6 and 7. One can observe

from Fig. 6 that the magnetization magnitude is very well preserved, since the mean value mav � 1 ± 10�16

and the variance r2
m is in the order of 10�30. It is remarkable that, despite the fact that we have not enforced

the preservation of magnetization magnitude during the quasi-Newton iterations, the accuracy in magne-

tization magnitude conservation is within machine precision. In other words, there is numerical evidence

that the stopping criterion expressed by Eq. (68) is somehow stronger than the preservation of magnetiza-

tion magnitude.
Moreover, one can see from Fig. 7 that the relative error ena ¼ ðân � aÞ=a is in the order of 10�7 in all

cases. As far as conservative dynamics is concerned, the same problem has been simulated with a = 0.

The results, reported in Fig. 8, show that the reversal of the thin-film occurs, in the sense that the average
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Fig. 2. Comparison between solutions of l-mag standard problem no. 4. Plots of Æmxæ and Æmyæ versus time. The external field is

applied at an angle of 170� off the x-axis.
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Fig. 3. Comparison between solutions of l-mag standard problem no. 4. Plots of Æmyæ versus time. The external field is applied at an

angle of 190� off the x-axis.
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magnetization exhibits a persistent oscillation around the reversed state. In fact, by comparing the magne-

tization behaviors for the conservative and dissipative case, reported in Fig. 9, one can observe that on a

short time scale, in which the free energy is not so far from its initial value (0 < t < 0.2 ns), the conservative
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Fig. 4. Numerical results for l-mag standard problem no. 4. Snapshot of magnetization vector field when the average Æmxæ crosses zero
for the first time. The external field is applied at an angle of 170� (up) and 190� (down) off the x-axis.

0 0.2 0.4 0.6 0.8 1
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

time [ns]

<
m

y>

2.5 nm
3.125 nm

Fig. 5. Numerical results for l-mag standard problem no. 4. Plots of Æmyæ versus time for two different sizes of the mesh edge length.

The external field is applied at an angle of 190� off the x-axis.
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and dissipative dynamics are significantly close. This gives importance to the study of the conservative

dynamics and means that the precessional effects are prevalent with respect to the damping effects in the
reversal process. Let us stress that the free energy is conserved, as one can see from Fig. 10, where exchange,

magnetostatic, anisotropy, Zeeman energy and the total free energy are reported as functions of time. In

this experiment we have checked that the relative error eg of the free energy with respect to its initial value

is in the order of 10�8 as one can see from Fig. 11. We observe that the conservative switching process
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Fig. 7. Numerical results for l-mag standard problem no. 4. Plot of the relative error ena ¼ ðân � aÞ=a as a function of time.

(a) d = 170�, N = 6400; (b) d = 170�, N = 10000; (c) d = 190�, N = 6400; (d) d = 190�, N = 10000.
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occurs mainly through a transfer of energy from magnetostatic form to exchange form. This transfer of

energy process is connected to the generation of spin-waves with decreasing wavelength [33].

As far as computational cost of our technique is concerned, numerical simulations for different number

of cells and different time-steps have been performed besides the previous ones. As indicators, we have used
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the average number of quasi-Newton iterations per time-step (NR), the average number of GMRES iter-
ations in one quasi-Newton iteration (LIN), the simulated time T, the simulation time Ts and the ratio be-

tween them, the maximum relative error ea;max ¼ max jðân � aÞ=aj, as functions of the orientation of the

applied field d, the number of cells N and the time-step. The results are summarized in Table 1. First,



Table 1

Numerical results

d [deg] N Dt
cM s

[ps] NR LIN ea,max T [ns] Ts [s] Ts/T [s/ns]

170 1000 2.5 11/14/17 4/5/5 1.5 · 10�8 5.7700 648.05 112

170 2500 2.5 11/14/17 6/7/7 2.0 · 10�7 5.8450 1976.47 338

170 6400 2.5 11/14/18 11/13/15 3.0 · 10�7 5.8400 5631.23 964

170 10000 2.5 11/14/18 17/19/22 1.3 · 10�7 5.8425 12152.74 2080

190 1000 2.5 11/14/17 4/5/5 1.4 · 10�8 5.5800 632.34 113

190 2500 2.5 11/14/18 6/7/8 0.7 · 10�7 6.4100 2183.36 341

190 6400 2.5 11/14/18 12/13/15 6.2 · 10�7 6.4100 6257.13 976

190 10000 2.5 11/14/18 18/20/23 7.0 · 10�7 6.4100 13546.79 2113

170 6400 1.0 9/12/14 6/6/7 3.7 · 10�7 5.8420 10145.46 1737

170 6400 2.5 11/14/18 11/13/15 3.0 · 10�7 5.8400 5631.23 964

170 6400 5.0 14/18/25 24/26/28 3.5 · 10�7 5.9400 4624.31 779

190 6400 1.0 9/12/14 6/6/7 1.3 · 10�7 6.4150 11163.490 1740

190 6400 2.5 11/14/18 12/13/15 6.2 · 10�7 6.4100 6257.13 976

190 6400 5.0 14/18/27 23/26/30 1.1 · 10�7 7.4950 5705.520 761

Indicators of computational cost for the proposed mid-point rule numerical technique. d is the angle of the applied field, N is the

number of cells, Dt is the time-step, column NR reports minimum/average/maximum number of quasi-Newton iterations per time-step,

column LIN reports minimum/average/maximum number of GMRES iterations for one quasi-Newton iteration,

ea;max ¼ max jðân � aÞ=aj is the maximum relative error with respect to the assigned damping parameter a, T is the simulated time, Ts

the simulation time. N = 1000 refers to a prism cell of size 12.5 · 5 · 3 nm. N = 2500 refers to a prism cell of size 5 · 5 · 3 nm. N = 6400

refers to a prism cell of size 3.125 · 3.125 · 3 nm. N = 10000 refers to a prism cell of size 2.5 · 2.5 · 3 nm. The simulations have been

performed with a Pentium 4 processor workstation (3 GHz), 1 GB RAM under RedHat Linux 9.
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one can observe that the total number of cells N does not affect the number of quasi-Newton iterations in

both the cases d = 170� and d = 190�, whereas it affects the solution of the linear systems by increasing the

average number of GMRES iterations. Second, one can clearly see that the minimum and maximum values

of quasi-Newton and GMRES iterations are close to the average values, meaning that the iterative proce-

dure weakly depends on magnetization dynamics and magnetization state, despite the approximate jaco-

bian matrix ~J
n

F depends on the particular value of magnetization vector m. Third, some considerations

on computational cost can be made. We expect that the computational cost function C(N) of the algorithm,

in terms of number of cells, can be reasonably expressed by the sum of two terms. In fact, at each quasi-
Newton iteration the cost of the evaluation of magnetostatic field (3D FFT convolution [5]) is proportional

to N logN . On the other hand, in each quasi-Newton iteration, the cost of LIN iterations of GMRES is

proportional to N, since basically is the cost of LIN sparse matrix–vector products. Thus, we can express

the overall cost function C(N) as
CðNÞ ¼ T sðNÞ=T ¼ c1NR � N logN þ c2NR � LIN � N ; ð70Þ

where c1 and c2 are fitting parameters. One can see from Fig. 12 that for moderately large number of cells,

the ratio Ts/T increases according to the OðN logNÞ scaling expected for the computation of the demagne-

tizing field by the 3D FFT convolution, whereas, for larger number of cells, the computational cost of the

GMRES iterations becomes prevalent. In addition, as it was emphasized at the end of Section 5, if one dis-

regards the magnetostatic field, the iterative procedure (56) becomes a pure Newton–Raphson algorithm
which converges to the solution quadratically, leading to even shorter simulation times.

Finally, it is important to underline that by increasing the time-step Dt, the numerical algorithm exhibits

a considerable speed-up, as one can see comparing the ratios Ts/T obtained in both the cases for a given

number of cells N = 6400 and time-steps such that (cMs)
�1Dt = 1, 2.5, 5 ps. In all the simulations it has been

observed that the relative error ea,max is in the order of 10�7.
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9. Conclusions

In this paper, we have shown that the well-known mid-point rule technique can be successfully used for

accurate micromagnetic simulations. In fact, mid-point rule allows one to obtain the preservation of the

fundamental properties of the LLG dynamics: conservation of magnetization magnitude, Lyapunov struc-

ture and energy balance properties. The numerical results discussed in the paper show that the mid-point
rule leads to an accurate reproduction of the precessional part of magnetization motion, which is very

important in reversal processes. In addition, the mid-point rule technique can be applied to any spatial dis-

cretization which leads to the formal structure (26) of the effective field. In this respect, both finite difference

and finite element methods [15] can be used. We have also shown that, for finite difference spatial discret-

ization, the adoption of mid-point time-stepping leads to a feasible computational cost. In fact, despite the

implicit nature of the mid-pint rule, the use of suitable quasi-Newton iterative procedure and fast iterative

techniques to solve sparse linear systems (GMRES) leads to reasonable simulation times. This is also due to

the fact that one can choose the time-step only for accuracy requirements, since the mid-point rule is uncon-
ditionally stable. The stability property of mid-point rule permits one to use a time-step comparable with

the time scale of actual magnetization dynamics phenomena (ps).
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